Australian Government

Department of Defence

Defence Science and
Technology Organisation

Performance Analysis and
Optimisation of the Fact
Extractor System

Shona Heath
DSTO-TN-0566

PITTOMUTION STATEMENT A

+epioved for Public Release
Distribution Unlimited

BEST AVAILABLE COPY

20060915 117

Australian Government
Department of Defence
Defence Science and
Technology Organisation

Performance Analysis and Optimisation of the Fact
Extractor System

Shona Heath

Command and Control Division
Information Sciences Laboratory

DSTO-TN-0566

ABSTRACT

DSTO has developed an in-house application called the Fact Extractor System for performing
Information Extraction. This system can be used to extract interesting information from text
documents. It is a component-based system providing a suite of tools to do this task. The
system has a number of deployment tools, including one called FormFiller. FormFiller is an
application that enables a user to process a set of documents, one at a time interactively or in
an automated batch mode, with one or more Fact Extractors and save results to an output file
under user control. This report describes performance testing and optimisation of the
FormFiller application and Fact Extractors.

RELEASE LIMITATION

Approved for public release

A Fod-((-1352

Published by

DSTO Information Sciences Laboratory
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonwealth of Australia 2004

AR-013-124
June 2004

APPROVED FOR PUBLIC RELEASE

Performance Analysis and Optimisation of the
Fact Extractor System

Executive Summary

The Intelligence Community often needs to process large volumes of unstructured text
to obtain interesting information. Processing the text manually is not a very efficient
use of time. The DSTO Fact Extraction System was developed to demonstrate how
automated text processing could improve the efficiency of finding interesting
information

Using regular expression technology, tools known as Fact Extractors have been
developed. Fact Extractors contain rules that specify the type of fact to be discovered,
and are then run over the text document to highlight the facts.

The FormFiller application allows users to run one or more Fact Extractors over a
document or set of documents at once and save results to an output file. The
application can be deployed automatically to capture and record all of the facts from
the chosen Fact Extractors, or run under user control.

The performance of the FormFiller application was an issue as clients interested in the
Fact Extractor suite of tools had complained that it was too slow. A series of tests were
performed to record the performance of FormFiller. FormFiller was written in the Java
programming language, and a Java performance analysis tool was used to identify
areas of the source code that were taking up a lot of processing time. The code was
then inspected and changed. The same performance tests were run over the new code
to see if they had an effect on performance. The first had a significant improvement on
processing time. This process was then repeated, and another area of the program was
identified and improved.

The improvements made have benefited both FormFiller and the entire suite of Fact
Extractor tools, as some of the problems were in code used by the entire system. The
advantage is that potential clients and users of the system will no longer be
discouraged by long document processing times.

The performance of different Fact Extractors in FormFiller was then measured, as this
will assist in future Fact Extractor design.

This report describes the approach taken in analysing and tuning the performance of
the Fact Extractor system, and is aimed at readers with a technical interest in the
system.

Author

Shona Heath
Command and Control Division

IBL Student, Swinburne University of Technology

Studying Bachelor of Engineering (Telecommunications and
Internet Technologies) / Bachelor of Applied Science (Computer
Science and Software Engineering)

Contents

DSTO-TN-0566

1. INTRODUCTION . ..cocotriersreererernansisessssssssssasasessssssssssssssssssssssssssssssesssssossansssssassssassssssssonsasass 1
2. TESTS PERFORMEDcoiriierinnisnnssnsssserensssssensssssssssssssssnsssssssssasessasscssasasses w2
2.1 TeSt COrPOLa..cinsssnnsssesssencsosessessassssasssessssssssssenssensassssssesesssssnsnns 2

2.2 Estimation of Theoretical Lower Bound 2

2.3 Determining Baseline and Fact Extractor Performance 3
2.3.1 Number of Create RULEScccovurreinrininiiniiimnnininnstssinsessesssesessesesesssens 3

2.3.2 Number of Matches ...t ssssssses 3

2.3.3 Number of Levels of Subordinate Fact EXtractorscoevveveceiiincnnan. 4

2.3.4 List Fact EXITACIOTS ..ottt cscssssssssssasns 4

2.3.5 Complex Fact EXtractorsoouceunmrsesemsensessesnenneessisisssississsssisensniasnnsinns 4

2.3.6 Different Output TYPeS....covecrieemrissiseineenimsericnsiiiisiniisisssesss s 5

2.3.7 HTML INPUL coorrtertrntritentnssssis s sessesssessessessssssinssasssssasssenss 5

24 Test System 5
241 Testing Processing TImMe ..ot 5

242 Testing Memory USAZEccccveuimurissurmsiseiseisicisenisrseisississsissessssssssssasasens 5

3. RESULTS OF ESTIMATION OF THEORETICAL LOWER BOUNDccoeueeucneae 6
4. INITIAL BASELINE RESULTS..... 7
41.1 Number of Create RULEScccoceeeervimiviiininiinnnnisnnneinsesee it ssssssssanas 7

4.1.2 Number of Matchesccoceviniiniininniiieiisenss s seesnes 8

4.1.3 Subordinate Fact EXtractors.......ccvueeemmriernininniniseseensisencennsssssnesssiessannens 8

5. PERFORMANCE ANALYSIS AND TUNING 9
5.1 Analysis Tool and Techniques. 9

5.2 Initial Performance Optimisation 9

5.3 Results from Initial Optimisation. 11

5.4 Second Performance Optimisation 12

5.5 Results from Second Optimisation...... 13

6. FURTHER TESTING 13
6.1 Different Types of Fact Extractor 14

6.2 Output Targets...... RPN 14

6.3 List FACt EXEEACEOIS..ccccineircnirinerisnisinssessisssisssassnssisesessssessssssassassssssasssssssassasasssensans 15

6.4 Input SoOUrces......veverienruennanne 17

7. CONCLUSIONcoiiciriinncncncsenasesesssesesens .17
8. REFERENCESciiiiirininnisnisnensinstississiessissessesssssassasssssssssssnssnssnssssssassassssssssassassanses 19
APPENDIX: FULL TEST RESULTS.............. cesnssesasesssssrerassreasnsstisnassstsereesssasenese 21
A.1 Before OpHIMISALION w.cuvviecicnininieiesieseseressssenesessssssssssssssssssaresessssssssesssssssasssssssasses 21
A.1.1 Test One - Java REGEX Pattern Matcher vs. FormFﬂler 21

AL LT T ottt ccb st b e s es e b e s nees 21

ALL2 MEIMOTY «ourttiiiiiiietieinieisie ettt bbb 21

DSTO-TN-0566
A.1.2 Test Two — Some Comparisons of Different Fact Extractors 21
ALT2Z T TIHIE oottt e st e se s e e s e s e e s e s e st e eseese e teseesseens 21
A1.2.1. 1 Number 0f Create RULES. ... iceiereereeeeeeeeeseeeesessssesseeeseeeee e 21
A 1212 NUMDEL Of MAICHES ...t e e e eseeesessssseseasestesenessssesen 22
A.1.2.1.3 Subordinate Fact EXtTaCtOrS....uvvueeeeeeeeeeeesreseeeeeressesessessssesessssssssssene 23
ALL22 MEIMIOTY oottt ettt sttt st saaean 24
A1.2.2.1 Number of Create RUIES........ooieiieeeeeeeeeeeeeeeeeeeeeereeeeseres s 24
A1.2.22 NUMDEL Of MACRESeovveeeee et eereeee e e e 25
A.1.2.2.3 Subordinate Fact EXtractors....c.coueueeeeureerrrernerensensieeenenn. cerererennaeas 25
A.2 After First Optimisation.... 26
A.3 After Second OptiMISAtION....ccveureuserreresreserserrerssessessssnssessessessssssssssasesns 26
A4 Further Tests.....coevnerinrnernenneenesesssosenns 27
A.4.1 Different Type of Fact EXtTactOr......ucvveveeemeeeerensesesinssesssssessssssosesesennn. 27
A.4.2 Different OUIPUE TYPESouvurevricirceeeriseenseenasessssssssssssssssssssssessssssssons 28
A 4.3 LiSt FACt EXETACEOLS ..evevreeietirieetiececeitenseeeeseesesssesssessesssssessssssesesesssssssesseses 29

DSTO-TN-0566

1. Introduction

The DSTO Fact Extractor System is an application developed to perform information
extraction over unformatted text [1]. It comprises a set of components to assist with this
task. The FormFiller application is part of the Fact Extractor System tool suite [2]. It is
an end user tool for deploying one or more Fact Extractors over a set of documents to
extract interesting information.

One of the most common user complaints about the DSTO Fact Extractor system, in
particular the FormFiller application, was that the performance was very slow,
especially over large groups of documents.

A series of tests were performed to identify potential causes for slow performance of
the system. A standard set of test documents was developed initially and all tests were
performed over these documents.

As the Fact Extractor system is highly reliant on the Java Regular Expression (REGEX)
package, the performance of FormFiller can be no faster than the package’s regular
expression pattern matcher. A test was performed to determine this theoretical lower
bound on performance.

Secondly, a baseline was produced, which involved tests to determine the current
performance of FormFiller. This baseline was later used to check if any changes to the
system had resulted in an increase in performance or not.

Once the baseline was established, a Java performance analysis tool was used to target
hot spots where a lot of processing time was being spent. Changes were then made to
the source code, and the performance test was repeated, until members of the Fact
Extractor team were happy with the results. The goal was for FormFiller to be able to
process 1000 small (i.e. less than 10 KB each in size) documents within a minute using
the computer configuration described in Section 2.4.

Once the goal was achieved, the performance of a range of different fact extractors was
measured, as the results will assist in designing fact extractors that are efficient to
process.

Execution time was the main criteria in these tests, however memory usage was also
observed.

This report details the approach outlined above along with the outcomes of the
performance optimisation. It is directed at readers with a technical interest in the Fact
Extractor System.

DSTO-TN-0566

2. Tests Performed

2.1 Test Corpora
To facilitate testing, two representative sets of documents were derived from the
PROMED! corpus. They were designed to test FormFiller’s performance in handling

many small documents as well as large documents.

* 1000smalldocs — This folder contains 1000 small text files with sizes ranging

from 1 KB to 7 KB.
* 10largedocs — This folder contains 10 large text files with sizes ranging from 64
KB -100 KB.

For tests that used HTML input, the PROMED data was available in HTML format,
and two more corpora, 1000smallHTML and 10largeHTML, were derived.

2.2 Estimation of Theoretical Lower Bound

Fact Extractors use regular expressions to find matches in text. One regular expression
is evaluated for every sentence per rule. It was decided to run the regular expression
engine by itself, as this gave an indication of the theoretical best performance. The
performance of FormFiller cannot be any faster than the performance of the regular
expression pattern matcher it uses. In this case, the theoretical absolute lowest bound
for time would be the performance of the Java REGEX pattern matcher. The first test
determined the performance of this pattern matcher. This gave an indication of how
much extra overhead and processing time the FormFiller added.

To first test the Java REGEX package, a program called ‘TesterGUI’ that was previously
developed by a former Swinburne University of Technology IBL? student was used.
This program was originally designed to compare the Java REGEX package with other
regular expression pattern matchers, and for the purposes of this test it could be reused
and configured to match using Java REGEX.

The following regular expression was used for this test. This regular expression was
contained in a text file used with TesterGUI, but because FormFiller uses fact
extractors, this regular expression was made into a fact extractor called ‘testdate.fx’.
The regular expression was:

! PROMED is a collection of medical publications containing information about different
diseases.

2 IBL - Industry Based Learning, a program run through Swinburne University of Technology,
http:/ /www.swin.edu.au

DSTO-TN-0566

((?:Mon|Tue|Wed|Thu|Fri
(Jan|Feb|Mar | Apr |May |Ju
91+)

Sat|Sun) (?:[a-z]+)?),?([0-3]2[0-9])
Aug|Sep|Oct|Nov|Dec) (?:[a-z]+])? ([0~

In both FormPFiller and TesterGUI, the test was run over the ‘“10largedocs’ corpus.

The ‘TesterGUT’ application automatically tests each document in the corpus against
the regular expression pattern. FormFiller has an AutoRun (or batch) mode that
processes each document in the corpus, looking for matches, and it writes the results to
an output file. This mode was used when testing FormFiller.

Both processing time and memory usage was observed for each application.

2.3 Determining Baseline and Fact Extractor Performance

The second test involved running different Fact Extractors over both test corpora in the
FormFiller application and measuring the performance. A baseline was produced that
provided an indication of FormFiller’s initial performance, as well as a reference for
comparison with later test results. The baseline was developed using fact extractors
with differing numbers of create rules, matches, and levels of subordinate fact
extractors.

These tests were run over the ‘10largedocs’ corpus as well as the “1000smalldocs’
corpus.

2.3.1 Number of Create Rules

The number of create rules [1] in a Fact Extractor was tested to understand the effects
of increasing the number of create rules on both processing time and memory use. The
following Fact Extractors were used:

¢ Diseasel.fx - 1 create rule

e Disease80.fx — 80 create rules

e Diseasel60.fx - 160 create rules (double 80)

e Disease320.fx — 320 create rules (double 160, 4 times 80)

2.3.2 Number of Matches

A comparison was made of the processing time required to run a Fact Extractor known
to produce a high number of matches in the PROMED corpus against that of a Fact
Extractor known to find only a few matches in the corpus.

The results of this test were used to analyse FormFiller performance.

The following Fact Extractors were used:

DSTO-TN-0566

* Death.fx - low occurrences (270 matches in 1000smalldocs corpus)
* The.fx - high occurrences (14,643 matches in 1000smalldocs corpus)

2.3.3 Number of Levels of Subordinate Fact Extractors

A test was done to determine if calling a subordinate Fact Extractor [1] added any
significant increase in processing time. The following Fact Extractors were tested:

¢ Diseasesubl.fx - This calls the ‘Diseasel.fx’ Fact Extractor
e Diseasesub2.fx - Calls the ‘Diseasesubl.fx’ Fact Extractor
e Diseasesub3.fx — Calls the ‘Diseasesub?2.fx’ Fact Extractor

The results of these tests were also compared with results of the ‘Diseasel.fx’ Fact
Extractor3, as this was the lowest level Fact Extractor.

2.3.4 List Fact Extractors

This test was aimed at comparing processing times for differing formats of the same
Fact Extractor.

The Disease320.fx Fact Extractor was used for this test. It was also rewritten as a list fact
extractor [1], and as a fact extractor with all of the diseases in a single create rule in an
“OR” statement. The results of these three types of Fact Extractors were compared to
see which format was the fastest performer.

e Disease320.fx - 320 individual create rules
¢ Disease320inlrule.fx —- 1 create rule with 320 diseases in an OR statement
¢ Diseaselist.fx ~ A list of 320 diseases

The number of rules was reduced by half for each test. This test was repeated for 160,
80, 40, 20, 10, and 5 create rules, and their respective results were compared to

determine which fact extractor type was better used over a certain number of create
rules.

2.3.5 Complex Fact Extractors

This test looked at the effect of using a more complex Fact Extractor on processing
times.

The fact extractor, DEF_UnboundedPerson.fx, was used for this test as it had both create
and co-reference rules.

3 Refer to Section 2.3.1

DSTO-TN-0566

2.3.6 Different Output Types

While the initial tests concentrated on saving extracted facts to XML output, FormFiller
can also save facts in a Comma Separated Values (CSV) file format, as well as in a
database. To avoid any overhead associated with accessing a remote database, a
Microsoft Access database was configured on the test machine and used for this test.

2.3.7 HTML Input

The tests described in sections 2.3.1 — 2.3.6 were initially performed on a set of text
documents, and repeated for the HTML version of the same document set.

2.4 Test System

Every test was performed on a computer with the following specifications to ensure
consistency between the results:

Processor (CPU): Intel® Pentium® 4 2.40GHz
Memory (RAM): 512 MB
Operating System: Microsoft® Windows™ XP Professional

In calculating the baseline, each test was performed three times, and an average taken
to provide a better indication of results.

2.4.1 Testing Processing Time

Processing time was the primary focus of all of the tests. The system time was taken
right before and after the required processing and the difference calculated. The
TesterGUI application has this function built-in, and the FormFiller application was
slightly modified to take the time immediately before and after the AutoRun method is
called. At the end of the processing, both the number of documents processed and the
total time taken was displayed.

As the time was taken immediately before and after processing, the time to set up and
configure the application was not included.

Time was tested independently from memory so that the Task Manager used to
monitor the memory usage did not compromise results. No other applications were
running apart from the one being tested.

2.4.2 Testing Memory Usage

Although memory usage had not been a problem in the FormFiller application, it was
also recorded during baseline measurements in addition to processing time. This was
in case later changes to the source code significantly altered memory behaviour.

DSTO-TN-0566

The Microsoft Windows XP operating system allows users to monitor the memory
used by each process by invoking the Windows Task Manager and viewing the
‘Processes’ tab. The memory used by each process displayed in Task Manager is
updated once a second, which means that the results are approximate.

Memory was tested from immediately before the AutoRun process was initiated (start)
until it completed (end) as to exclude then memory usage when setting up and
configuring the FormFiller application. Again, no other applications were running
during this test apart from the one being tested and the task manager.

3. Results of Estimation of Theoretical Lower Bound

These are the averages* of the measurements taken when using TesterGUI to determine
the performance of the Java REGEX pattern matcher, in order to determine what the
best possible performance can be.

Table 1. Results of Test 1 - Java REGEX vs. FormFiller (Averages)

Time (minutes) Memory (MB) at start | Memory (MB) at end
Java REGEX 1.89 11.9 18.7
FormFiller 7.43 25.7 39

The fact that TesterGUI, the program designed to test the Java REGEX pattern matcher,
performed so slowly was unexpected, so another REGEX package, grep, was looked at.

A free 30-day trial version of grep called PowerGREP [3] was downloaded from
http://www.powergrep.com and the datepattern regular expression was compared
against the “10largedocs’ corpus. While this program had no timing function, it was
very fast, taking less than half a second to find and report matches.

Inspection of the source code for TesterGUI showed that it had a lot of processing that
was not required when attempting to measure the performance of the pattern matcher.
A program designed specifically for testing only the Java pattern matcher and nothing
else, called regexTest, was developed and run with the same regular expression and
corpus, and this produced a time of 0.441 seconds, similar to that of PowerGREP.

4 Refer to Appendix for full results of these tests

DSTO-TN-0566

Table 2. Comparison between pattern matchers, FormFiller and TesterGUI

- - Time
‘FormFiller 446.074 seconds
“ s TesterGUI 113.634 seconds
- .. - “PowerGREP. = (0.5 seconds
" RegexTest (basic Java pattern matcher) 0.441 seconds

From these results, it was clear that the Java REGEX package is not the reason why
FormFiller and TesterGUI performed slowly. The magnitude (approximately 1000:1) of
the performance difference between FormFiller and REGEX packages was surprising
and clearly indicated that there was scope for performance tuning.

4. Initial Baseline Results

Both time and memory usage were recorded during the baseline testing.

The baseline tests were done on fact extractors with different numbers of: create rules,
matches, and levels of subordinate fact extractors. The reason that these were the only
tests completed initially is because it was known that FormFiller needed improvement,
and these tests were done to produce a baseline that any improvements could then be
verified against. All of these tests were run in FormFiller, in the AutoRun mode.

As the results show, each test took several minutes, which was very slow. It is also
notable that it took longer to process the 10 larger documents compared to the 1000
smaller ones despite the 10 large documents corpus being smaller in total sizeS.

These are the averagesé recorded during these tests:

4.1.1 Number of Create Rules

Tables 3 and 4 show the average processing times and memory usage for Fact
Extractors with different numbers of create rules. From these results it can be seen that
having a larger number of create rules does not have a significant impact on either
processing time or memory usage.

5 10largedocs was 869 KB in total size, compared to 2.39 MB for 1000smalldocs
6 Refer to Appendix for full results of all tests

DSTO-TN-0566

Table 3. Average Times for the Baseline test with varying number of Create Rules

No. of rules | Time (min) over 1000smalldocs Time (min) over 10largedocs
1 4.02 7.3
80 4.49 7.54
160 5.03 7.43
320 5.94 7.74

Table 4. Average Memory usage for the Baseline test with varying number of Create Rules

No. of rules Memory (MB) 1000smalldocs Memory (MB) 10largedocs
1 25 (start) - 36.7 (end) 25.8 (start) - 39.8 (end)
80 25.6 - 33.7 25.6 -39.4
160 26.2-323 26.3-41
320 26.3-35.2 269 - 40.4

4.1.2 Number of Matches

Tables 5 and 6 show that when many facts are discovered there is a notable increase in
processing times with the small documents. The impact on memory usage was

expected.

Table 5. Average Times for Baseline test with varying number of Matches

No. of Matches

Time (min) over 1000smalldocs

Time (min) over 10largedocs

Low

4.04

7.52

High

10.08

7.48

Table 6. Average‘ Memory usage for Baseline test with varying number of Matches

No. of Matches Memory (MB) of 1000small Memory (MB) of 10Largedocs
Low 25.9 (start) - 37.9 (end) 26.1 (start) — 41 (end)
High 26.2-53.4 25.9 - 40.6

4.1.3 Subordinate Fact Extractors

Tables 7 and 8 show that the different levels of subordinate Fact Extractors have no
significant impact either on processing times or memory usage.

DSTO-TN-0566

Table 7. Average Times for Baseline test with varying levels of Subordinate Fact Extractors

No. Subordinate | Time (min) over 1000smalldocs | Time (min) over 10largedocs
0 (original) 4.02 7.3
1 4.1 7.34
2 4.12 7.32
3 4.1 7.2

Table 8. Average Memory usage for Baseline test with varying levels of Subordinate Fact
Extractors

" No. Subordinate | © Memory (MB) 1000smldocs | = Memory (MB) 10Lgdocs
- 0 (original) 25 (start) - 36.7 (end) 25.8 (start) - 39.8 (end)
- o1 25.9 - 37.8 26.1 - 40.8
L2 26.2-37.6 26.2 - 40.5
3 25.7-37.9 26 - 40.5

5. Performance Analysis and Tuning

5.1 Analysis Tool and Techniques

The aim of the performance tuning was to reduce the processing times taken. A goal
was set for FormFiller to be able to process 1000 small documents within a minute, as
this was decided to be an acceptable level of performance.

A Java execution profiler was used to find out where the application was spending
most of the time. This is a special program that examines your program while it is
running and reports on the time spent in each part of it.

A Java profiler called Borland Optimizelt [4] (version 4.11) was used for the analysis. It
has a CPU profiler that is effective in reporting the time spent in each method, and also

displaying it as a percentage of the overall time.

Once a particular time intensive method or piece of code had been identified, the
source code was then examined and alternative ways to write it were investigated.

5.2 Initial Performance Optimisation
After using Optimizelt to monitor ‘testdate.fx’ being run over ‘l0largedocs’ in
FormFiller using AutoRun, it was seen that the program spent the majority of its time

mn

dsto.imf.fx.core.SentenceBreaker.run()

DSTO-TN-0566

Figure 1 shows the output of the CPU profiler in Optimizelt, displaying the problem

methods:

Figure 1- Optimizelt Screen

r%ﬁ .

99.66% - 4712416 ms - java.awt.Dialog.show(

& ¥ 99.65% - 4712406 ms - java.awt. EventDispatchThread.pumpEventsF orHierarchy()

El ﬂ 89.65% - 4712406 ms - java.awt.EventDispatchThread.pumpEventsForHierarchy(

@ 99.65% - 4712406 ms - java.awt.EventDispatchThread. pumpOneEventForHierarchy(
) Q 99.61% - 4710595 ms - java.awt. EventQueue.dispatchEvent()

E] © 99.53% - 4709224 ms - java.awt.eventInvocationEvent.dispatch()

] @ 98.08% - 4685423 ms - dsto.imf.fx.core.SentanceBreaker.runQ

B O 97.74% - 4622058 ms - dsto.imffx.core.SentenceBreaker. readchar(

él ® 86.93% - 4586707 ms - java text RuleBasedBreakiterator.isBoundary(

=
|
i
|
}
i

t @

B0 96.98% - 458611 or following(i
c-j: 1.95% - 2456656 ms-]ava.textRulsBasedBreaknerator.handleNe »

2O 44.88% - 2122385 ms - java.text RuleBasedBreakiterator.handlePrevio
WO 00

i “© 0.0%-70ms - java. textRuleBasedBreaklteratorcheckOfrseto
I © 0.0% - 90 ms - Java.text RuleBasedBreakiterator.checkOffset(

L ‘© 0.0% - 40 ms - java text RuleBasedBreakiterator.getText()

© 0.55% - 26371 ms - dsto.imf.util. AbstractF ormat getText

1
i
i
i
|
!
{
i
I
i
|

2O 0.04% - 2142 ms - dsto.imf i core.SentenceBreaker.recordDrift()
El © 0.0% - 310 ms - dsto.imf.util AbstractFormat. createPosition(
] l [9 0.0% - 30 ms - dsto.imf.util. AbstractFormatremove()
i & © 0.0% - 20 ms - javax swing.text. GapContent§ StickyPasition. getOffseto

l‘!&\ necow

)
i
E
I
? -9 0.12% - 5868 ms - dsto.imf.util AbstractFormat.insenString0
i
i

L AWAAAIT Avinad vamn assa

ANNCA wam dabs fond
kel

Bt i T - SR
i]ava.textRuleB;sedBreaklterator.handleNext 47.38 2240501 ms
{java.text RuleBasedBreakiterator handlePravious 40.68 1923990 ms
1iava.text RuleBasedBreakiterator.lookupCategory 3.98 188459 ms
java.text.StringCharacteriterator.next 2.35 111309 ms
{java.text. StringCharacteriterator.previous 222 105204 ms
Hiavaxswlng,textOapContent.getStrlng 0.56 26492 ms
javax.swing.text. StyleContext.removeUnusedSets 0.37 17896 ms -
{java.awt EventQueue.getNextEvent 0.36 17484 ms
hlavaxswing textDefaultStyledDocumen1$ElementauﬂersElemChanges <init> 10.25 11965 ms
Further examination showed that this method called the
SentenceBreaker.readChar () method, which called

10

DSTO-TN-0566

java.text.RuleBasedBreakIterator.isBoundary (). This had two methods of
its own: handleNext () and handlePrevious (), both of which were very time-
intensive.

An examination of the source code of ‘dsto.imf.fx.core.SentenceManager’
showed that isBoundary () was being called to check if every single character was a
sentence boundary for each document for each fact extractor.

Since isBoundary () was a time-intensive process, instead of repeating it many times,
an idea for performance enhancement was to perform it only once over each
document, storing the results in a cache. Further on during processing, each character
position would be tested to see if it is in the cache, i.e. if it is in the cache it is a sentence
break.

A cache was made using a HashSet in Java, which is an implementation of the Set
interface. In theory, this should be an improvement, because this cache uses hashing,

which is known to be a fast process. Once the code was modified, the same timing tests
were performed again. The results are shown in Tables 9 - 11.

5.3 Results from Initial Optimisation

Table 9. Processing times after initial optimisation for Number of Create Rules

No. of rules | Time (se¢) over 1000smalldocs © | = Time (sec) over 10largedocs .
‘ 1 29 8.8
- 80 . 49 11
“160 71.9 13.1
- 320 1179 19.2

Table 10. Processing times after initial optimisation for Number of Matches

No. of Matches | = Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
Low 26.4 8.8
High 388.2 = 6.47 minutes 10.1

Table 11. Processing times after initial optimisation for number of levels of Subordinate Fact
Extractors

No. Subordinate | Time (sec) over 1000smalldocs Time (sec) over 10largedocs
0 (original) 29 8.8 '
1 299 8.7
2 27.5 8.6
3 28 9

11

DSTO-TN-0566

12

As is evident from comparing these results with the unoptimised times given in Tables
3, 5 and 7, this change had a dramatic improvement on performance. The time was
reduced from minutes to seconds. In the case of a single create rule over 1000 small
documents, the time was reduced from 4.02 minutes to 29 seconds, which is 8 times
faster. Over 10 large documents, the time improved from 7.3 minutes to 8.8 seconds,
which is 50 times faster.

After the initial optimisation, a memory test was run again that showed that the
optimisation had no significant effect on the memory usage.

This improvement to the code explains why TesterGUI also took so long, because it
implemented the SentenceBreaker class in the same way as FormFiller.

The goal of processing 1000 documents within a minute was not fully achieved. In
particular, running the fact extractor with a high number of matches (‘'The.fx’) took
over 6 minutes. This was run through Optimizelt to identify any further bottlenecks.

5.4 Second Performance Optimisation

After running ‘The.fx’ over ‘1000smalldocs’ in Optimizelt, it was discovered that the
majority of the time, 81.72%, was spent in

dsto.imf.fx.formfiller.AutoRunDialog.writeXML

After that ‘Disease320.fx" was run over ‘1000smalldocs’ in Optimizelt, and again
autoRunDialog.writeXML took the highest percentage of time, however this time it

was only 31.1%. This was most likely because there were fewer facts that needed to be
output in the latter case.

Examination of the source code indicated that each time facts were written to the XML
output file, the program would check to see if the file existed, then the entire document
was read in and the last line checked to see if there was anything there, or if it needed
to first write an XML header. So as more and more facts were added, the document
became larger, taking longer to read each successive time.

Both the XML and CSV methods were modified to use a Buf feredWriter instead of
justaFileWriter.

The writeXML method was split into 3 separate methods to stop it from doing
unnecessary work. The first method was to output an XML heading, the second to
output all of the results, and the third to close the final <results> tag. This approach
did away with the need to read the output file each time facts were written to it,
because the header was written at the start. Facts were appended to the document, and
when this was completed the results tag was closed.

DSTO-TN-0566

5.5 Results from Second Optimisation

The same timing tests were again completed once the code had been changed. Tables
12 - 14 show the results from these tests.

Table 12. Times after second optimisation — Number of Create Rules

No. of rules| Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
L 1 24.4 8.7
.80 31.3 10.2
160 383 12.7
T 320 57.6 : 18.3

Table 13. Times after second optimisation— Number of Matches

“No. of Matches | Time (sec) over 1000smalldocs . | Time (sec) over 10largedocs:
e on Lows 23.4 8
High 251 8.6

Table 14. Times after second optimisation — Number of levels of Subordinate Fact Extractors

‘No. subordinate | Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
0 (original) 244 8.7
BRI s | 25.5 8.1
2 27.4 8.1
3 28.2 8.1

As the results indicate, this improvement made a notable difference to processing
times, particularly for the Fact Extractors with a large number of create rules and a
large number of matches. The second optimisation allowed us to achieve the goal of
processing all of the observed times in under a minute.

A further test run in Optimizelt showed that most of the time was spent in
java.awt.EventQueue.getNextEvent, which is an idle process. As the goal of
processing 1000 small documents within a minute had been achieved, no further
optimisation was undertaken. It was decided however that if any futher tests that
followed failed the 1000 documents a minute requirement, they would be run through
the profiler.

6. Further Testing

Since the initial performance goal had been achieved, a wider set of Fact Extractors was
tested in FormFiller (again using AutoRun) to observe their performance. Tests were

13

DSTO-TN-0566

also run using both text and HTML documents as input files, and with facts being
saved to CSV and XML files, as well as to a database.

6.1 Different Types of Fact Extractor

For Fact Extractors with different numbers of create rules, matches, and levels of
subordinate Fact Extractors, refer to section 5.5.

Table 15 shows that the processing time for a Fact Extractor with a co-reference rule,
‘DEF_UnboundedPerson.fx’, is well under the 1-minute upper limit.

Table 15. Time results for a Fact Extractor with a co-reference rule

Time (sec) over 1000 small documents Time (sec) over 10 large documents
34.8 17.5

6.2 Output Targets

Up to this point, all the tests have been output to XML format. The baseline? tests were
repeated for both CSV and database output. The results are shown in Tables 16 - 18.

Table 16. Number of Create Rules output to XML

No. of rules Time (sec) over 1000smalldocs Time (sec) over 10largedocs
1 244 8.7
80 31.3 10.2
160 38.3 12.7
320 57.6 18.3

Table 17. Number of Create Rules output to CSV

No. of rules | Time (sec) over 1000smalldocs Time (sec) over 10largedocs
1 28.3 8.5
80 30.3 10.6
160 43 13
320 56 19.1

7 The times for differing number of create rules are shown here only. Refer to Appendix for full
results.

14

DSTO-TN-0566
Table 18. Number of Create Rules output to MSAccess Database
No. of rules | Time (sec) over 1000smalldocs - Time (sec) over 10largedocs
1 23.7 8.4
80 354 124
160 45.7 153
320 66.2 21.6

These results indicate that there is no significant difference in using either XML or CSV
files as the output target. Writing to a database took a little longer for the Fact
Extractors with a large number of create rules. Although it took 66.2 seconds to write
the facts found with the 320-create rule Fact Extractor to the database, this was
accepted because it was a Microsoft Access database on the test machine. The extra
time was spent inserting the facts into the database.

6.3 List Fact Extractors

For all of the previous tests, each disease found in the Fact Extractors had its own
individual create rule. This is one format of a list fact extractor, and on the graphs
below is represented as ‘Individual Rules’. The list of diseases was also made into a
List Fact Extractor, which was a text file that had each disease on its own line. On the
following graphs, this is shown as ‘List’. The third format of Fact Extractor had all of
the diseases combined into an ‘OR’ statement, and this statement made up a single
create rule. This is shown on the graphs below as ‘One Big Rule’.

After completing the tests, the following comparison graphs were produced?.

8 Refer to Appendix for the full results

15

DSTO-TN-0566

16

Figure 2 - Different FX formats comparison over 1000 small documents

ajtime (sec)

—4- List

~# Ore BigRue
~&— Inchividual Rues

0

0 2 4

T T T T T T Y Y T T T T T Y

0 60 80 100 120 140 160 180 200 220 240 260 280 300 320 entities

Figure 3 - Different FX formats comparison over 10 large documents

30

25

20

15

10

0

time (sec)

—&— List
~#— One Big Rule
—&— Individual Rules

—-

T T T T T T T T Y T T T T T T

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 gntities

DSTO-TN-0566

Figures 2 and 3 show that as the number of rules increased, the List Fact Extractor had
the most efficient processing times over both sets of documents.

6.4 Input Sources

So far, all the tests had used text file input. This was then compared to HTML input.
The HTML input files were made up of exactly the same data as the text input, only in
HTML format. Tables 19 and 20° show that processing HTML input takes slightly
longer than text input, particularly for the larger documents.

Table 19. Times for text input with differing number of Create Rules

~No. of rules | . Time (sec) over 1000smalldocs” | = Time (sec) over 10largedocs
: i ¥ 24.4 8.7
.- 80 31.3 10.2
. 160 38.3 12.7
- 320 57.6 18.3

Table 20. Times for HTML input with differing number of Create Rules

No. of rules | Time (sec) over 1000smalldocs “Time (sec) over 10largedocs -
i 1 30.6 28.4
80 36.9 29.8
160 42.5 32
320 57 37.2

7. Conclusion

The performance analysis and optimisation of the Fact Extractor System has proved to
be highly beneficial allowing the goal time of processing 1000 documents within a
minute to be achieved. The use of the Optimizelt profiler was useful in quickly
identifying problem areas. The improvements that were made to the sentence breaking
in particular will benefit the entire suite of Fact Extraction tools, because this was one
of the core components.

As no further major bottlenecks were identified in the final set of tests the results of
those tests can now be used to help design effective fact extractors.

The test results clearly showed that adding more create rules to a fact extractor does
not significantly increase the processing time. As the number of rules was doubled, the

9 Refer to Appendix for full results

17

DSTO-TN-0566

18

time did not double. Processing 320 rules over 1000 documents still takes less than one
minute, even in the unlikely event that a Fact Extractor contained that many rules.

The results also show that the actual number of facts found is of little significance to
the processing time. It does not take much extra time to process a Fact Extractor that
finds a very high number of facts as opposed to one that finds a much lower number.
The majority of processing time is spent evaluating the rules.

Calling subordinate Fact Extractors similarly has little impact on the processing time.
Therefore, for ease of development, if a user invokes a subordinate Fact Extractor
instead of making a complex rule, the overhead in terms of extra processing time will
be minimal and will not depend on how many levels of subordinate Fact Extractors are
invoked.

The more complex Fact Extractor used to test the presence of co-reference rules had
two create rules as well as the co-reference rule. The time taken to process this was the
equivalent of processing over 80 create rules. This indicated a processing time
overhead for the co-reference rule, however the time was still within the 1000
documents per minute target.

List fact extractors are a lot faster to process than ones based on multiple create rules. If
there are any more than about 10 rules to search for, it would be most efficient to put
them in a list. However, the list processor does not resolve regular expressions, it will
only search for exact matches of the text included in the list, and so this type of fact
extractor is best suited for entities, such as place or organisation names.

There is no major difference to processing times for saving extracted facts to either
XML or CSV files, however writing to a database takes a little longer.

HTML input takes a little longer to process than text input, and this is because HTML

is a more complex document format, however it does not have a significant impact on
processing time.

In addition to the original PROMED’ documents, a different corpus of 1000 documents
was tested to make sure that FormFiller could process these within the target time of
less than one minute. The performance target was met with the new corpus.

For the test corpora and test set of Fact Extractors, memory usage was never an issue
both before and after the optimisation.

Experience with the testing suggested some improvements for the test process.
* The test corpora should have been the same total size. Instead, ‘10largedocs’
was 869 KB and ‘1000smalldocs’ was 2.39 MB.

DSTO-TN-0566

e More complex Fact Extractors should have been tested. Testing more complex
Fact Extractors would have given a more rigorous set of timing results, and
may have revealed additional problem areas in the software.

8. References

[1] J. Das, G. Chase and S. Davis, “Fact Extractor System Processing Engine”,
DSTO-TR-1396.

[2] https:/ /sourceforge.dsto.defence.gov.au/ projects/ factextractors/ , last
accessed 25 June 2004

[3] http://www.powergrep.com , last accessed 25 June 2004

[4] http:// www.borland.com/optimizeit/ , last accessed 25 June 2004

DSTO-TN-0566

Appendix: Full Test Results

A.1 Before Optimisation
A.1.1 Test One - Java REGEX Pattern Matcher vs. FormFiller

A.1.1.1 Time

Table 21. Full time results for Test 1 — Java REGEX vs. FormFiller

Test FormFiller Time = . /- " | Java REGEX Time =~ S
1| 447 584 ms = 7.46 minutes 121 004 ms = 2.0167 minutes
2 | 443 748 ms = 7.40 minutes 110 009 ms = 1.8335 minutes
\ 3 | 446 892 ms = 7.45 minutes 109888 ms = 1.8315 minutes
Average | 446 074 ms = 7.43 minutes 113634 ms = 1.8939 minutes
A.1.1.2 Memory

Table 22. Full memory results for Test 1 — Java REGEX vs. FormFiller

Test FormFiller Memory (start — end) | Java REGEX Memory (start—end)
~ - 1126160 KB -39 356 KB 12224 KB -19 116 KB
2126080 KB-40712 KB 12 224 KB - 19 364 KB
; 326712 KB -40 044 KB 12228 KB-19112 KB
Average | 26 317 KB - 40 037 KB 12225 KB -19 197 KB

A.1.2 Test Two - Some Comparisons of Different Fact Extractors

A.1.2.1 Time

A.1.2.1.1 Number of Create Rules

Table 23. Full time results for 1 Create Rule

Test Time (ms) 1000smalldocs |~ = Time (ms) 10largedocs
1 | 245984 = 4.1 minutes 436498 = 7.3 minutes
2 | 239855 = 4 minutes 445601 = 7.4 minutes
3 | 238082 = 4 minutes 432713 = 7.2 minutes

Average | 241307 = 4.02 minutes 438271 = 7.3 minutes

DSTO-TN-0566

Table 24. Full time results for 80 Create Rules
Test Time (ms) 1000smalldocs

22

Time (ms) 10largedocs

1 | 274274 = 4.6 minutes

460593 = 7.7 minutes

2 | 269868 = 4.5 minutes

445441 = 7.4 minutes

3 | 264911 = 4.4 minutes

450327 = 7.5 minutes

Average | 269684 = 4.5 minutes

452120 = 7.54 minutes

Table 25. Full time results for 160 Create Rules

Test Time (ms) 1000smalldocs

Time (ms) 10largedocs

1| 301083 = 5 minutes

446142 = 7.43 minutes

2| 292240 = 4.9 minutes

446322 = 7.44 minutes

3 [312700 = 5.2 minutes

444479 = 7.4 minutes

Average | 302008 = 5.03 minutes

445648 = 7.43 minutes

Table 26. Full time results for 320 Create Rules

Test Time (ms) 1000smalldocs

Time (ms) 10largedocs

1| 355421 = 5.92 minutes

472299 = 7.9 minutes

2 | 353729 = 5.9 minutes

448795 = 7.5 minutes

3 | 359838 = 6 minutes

472389 = 7.9 minutes

Average | 356329 = 5.94 minutes

464494 = 7.74 minutes

A.1.2.1.2 Number of Matches

The high number of matches finds 14, 643 facts in the 1000 documents corpus, and 5819

in the 10 documents corpus.

The low number of matches finds 270 facts in the 1000 documents corpus, and 139 in

the 10 documents corpus.

Table 27. Full time results for high number of matches

Test Time (ms) 1000smalldocs

Time (ms) 10largedocs

1 [618510 = 10.3 minutes

441024 = 7.4 minutes

2 | 604409 = 10.1 minutes

466551 = 7.8 minutes

3 | 590649 = 9.8 minutes

439171 = 7.3 minutes

Average | 604523 = 10 minutes

448949 = 7.48 minutes

Table 28. Full time results for low number of matches

DSTO-TN-0566

Test Time (ms) 1000smalldocs | - Time (ms) 10largedocs
‘ 1] 243560 = 4.1 minutes 453622 = 7.6 minutes
- 2| 242239 = 4 minutes 442536 = 7.4 minutes
. 3 | 242238 = 4 minutes 457027 = 7.6 minutes
Average | 242679 = 4.04 minutes 451062 = 7.52 minutes

A.1.2.1.3 Subordinate Fact Extractors

Table 29. Full time results for the bottom level fact extractor

Test “Time (ms) 1000smalldocs | “Time (ms) 10largedocs
oo 1| 245984 = 4.1 minutes 436498 7.3 minutes
.2 1 239855 = 4 minutes 445601 = 7.4 minutes
= -3 | 238082 = 4 minutes 432713 = 7.2 minutes
. Average | 241307 = 4.02 minutes 438271 = 7.3 minutes

Table 30. Full time results for 1 subordinate fact extractor

"Test .| Time (ms)1000smalldocs | '~ Time (ms) 10largedocs
Co 1] 249569 = 4.2 minutes 444169 7.4 minutes
. 2| 244171 = 4 minutes 439922 = 7.3 minutes
: 3 | 244041 = 4 minutes 438080 = 7.3 minutes
‘Average | 245927 = 4.1 minutes 440724 = 7.35 minutes

Table 31. Full time results for 2 subordinate fact extractors

" Test ~Time (ms) 1000smalldocs _Time (ms) 10largedocs -
‘ 1| 248006 = 4.1 minutes 443638 7.4 minutes
2 | 242068 = 4 minutes 434265 = 7.2 minutes
‘ 3| 252182 = 4.2 minutes 439623 = 7.3 minutes
- Average | 247419 = 4.12 minutes 439175 = 7.32 minutes

Table 32. Full time results for 3 subordinate fact extractors

‘Test Time (ms) 1000smalldocs - Time (ms) 10largedocs -
1245724 = 4.1 minutes 439201 = 7.3 minutes
.21 244602 = 4.1 minutes 434445 = 7.2 minutes
3 | 246474 = 4.1 minutes 431851 = 7.2 minutes
Average | 245600 = 4.09 minutes 435166 = 7.25 minutes

23

DSTO-TN-0566

A.1.2.2 Memory

A.1.2.2.1 Number of Create Rules

Table 33. Memory results for 1 create rule

Test Memory (KB) 1000smalldocs

Memory (KB) 10largedocs

1 | 25488 (start) — 37612 (end)

26064 (start) — 40868 (end)

2 | 25848 - 37592

26600 — 41148

3 | 25464 - 37608

26624 - 40276

Average | 25600 - 37604

26429 — 40764

Table 34. Memory results for 80 create rules

Test Memory (KB) 1000smalldocs

Memory (KB) 10largedocs

126220 (start) - 34204 (end)

26044 (start) — 39352 (end)

2| 25880 - 34680

26632 - 41100

3 | 26396 — 34752

25844 - 40612

~Average | 26165 - 34545

26173 — 40355

Table 35. Memory results for 160 create rules

Test Memory (KB) 1000smalldocs

Memory (KB) 10largedocs

1 | 26888 (start) ~ 33516 (end)

26540 (start) — 42080 (end)

2 | 26708 -32704

27384 - 42228

3 | 26920 — 32972

26756 — 41660

Average | 26839 - 33064

26893 — 41989

Table 36. Memory results for 320 create rules

Test Memory (KB) 1000smalldocs Memory (KB) 10largedocs
1 | 26628 (start) — 36316 (end) 27464 (start) — 41784 (end)
2 | 26936 — 35968 27440 - 40548

3 [27088 - 35868

27744 - 41792

Average | 26884 - 36051

27549 — 41375

24

DSTO-TN-0566

A.1.2.2.2 Number of Matches

Table 37. Memory results for high number of matches

Test Memory (KB) 1000smalldocs -~ Memory (KB) 10largedocs
: 1126788 (start) — 54572 (end) 26608 (start) — 41192 (end)
2| 26800 — 54788 26880 - 42504
; 3| 25832 — 54788 26544 - 41004
. - Average | 26473 — 54716 26677 — 41576

Table 38. Memory results for low number of matches

Test - " Memory (KB) 1000smalldocs Memory (KB) 10largedocs ' =
' 1| 26312 (start) — 40680 (end) 26728 (start) — 40752 (end)
-2'{ 28080 — 36372 26396 — 41660
_ -3 | 26352 -39340 26532 — 43572
- Average | 26855 — 38797 26552 — 41995

A.1.2.2.3 Subordinate Fact Extractors

Table 39. Memory results for bottom-level fact extractor

~ Test Memory (KB) 1000smalldocs “Memory (KB) 10largedocs
T 1| 25488 (start) - 37612 (end) 26064 (start) - 40868 (end)
2 | 25848 — 37592 26600 -41148
3 | 25464 — 37608 26624 - 40276
Average | 25600 - 37604 26429 - 40764

Table 40. Memory results for 1 subordinate fact extractor

Test *'Memory (KB) 1000smalldocs Memory (KB) 10largedocs
1] 26160 (start) — 38584 (end) 26832 (start) — 41212 (end)
201 26720 - 39012 26452 — 41356
- 3| 26640 — 38636 26828 - 42620
Average | 26507 — 38744 26701 — 41729

Table 41. Memory results for 2 subordinate fact extractors

Test Memory (KB) 1000smalldocs Memory (KB) 10largedocs
1| 27396 (start) — 38744 (end) 26768 (start) — 42268 (end)
2 1 25892 — 38696 26768 — 41864
327172 -38192 26880 — 40188

Average

26820 - 38544

26805 — 41440

DSTO-TN-0566

26

Table 42. Memory results for 3 subordinate fact extractors

Test Memory (KB) 1000smalldocs Memory (KB) 10largedocs
1| 26180 (start) - 38088 (end) 26852 (start) - 42164 (end)
2 | 26576 - 37392 26484 - 41700
3 | 26292 - 38800 26440 — 41468

Average | 26349 - 38093 26592 - 41777

A.2 After First Optimisation

Table 43. Time Results of Number of Create Rules

No. of rules | Time (ms) over 1000smalldocs Time (ms) over 10largedocs
1| 29082 =29 seconds 8873 = 8.8 seconds
80 | 49261 = 49 seconds 10965 = 11 seconds
160 | 71874 = 71.9 seconds 13079 = 13.1 seconds
320 | 117990 = 117.9 seconds 19238 =19.2 seconds

Table 44. Time results for Number of Matches

No. of Matches

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

Low

26377 = 26.4 seconds

8883 = 8.8 seconds

High

388389 = 6.47 minutes

10134 = 10.1 seconds

Table 45. Time Results of Subordinate Fact Extractors

No. subordinate

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

0 (original)

29082 =29 seconds

8873 = 8.8 seconds

1] 29923 =29.9 seconds

8713 = 8.7 seconds

2 | 27470 = 27.5 seconds

8652 = 8.7 seconds

3 | 28381 =28 seconds

9023 = 9 seconds

A.3 After Second Optimisation

Table 46. Time Results of Number of Create Rules

No. of rules | Time (ms) over 1000smalldocs Time (ms) over 10largedocs
1 | 24485 = 24.4 seconds 8697 = 8.7 seconds
80 | 31315 = 31.3 seconds 10154 = 10.2 seconds
160 | 38305 = 38.3 seconds 12678 = 12.7 seconds
320 | 57603 = 57.6 seconds 18346 = 18.3 seconds

DSTO-TN-0566

Table 47. Time results for Number of Matches

No. of Matches | Time (ms) over 1000smalldocs | Time (ms) over 10largedocs
- Low | 23423 = 23.4 seconds 8002 = 8 seconds
- High | 25107 = 25.1 seconds 8593 = 8.6 seconds

Table 48. Time Results of Subordinate Fact Extractors

No. subordinate | Time (ms) over 1000smalldocs | Time (ms) over 10largedocs ™.

24485 = 24.4 seconds 8697 = 8.7 seconds

-~ 0(original)

1| 25526 = 25.5 seconds 8072 = 8.1 seconds

5| 27449 = 27 4 seconds 8062 = 8.1 seconds

8111 = 8.1 seconds

3| 28200 = 28.2 seconds

A.4 Further Tests
A 4.1 Different Type of Fact Extractor

Create rules and a co-reference rule.

Table 49. Time Results for Number of Create Rules

“Time (ms) over 1000smalldocs - | Time (ms) over 10largedocs =~

No. of rules

1] 24485 =24.4 seconds

8697 = 8.7 seconds

80| 31315 = 31.3 seconds

10154 = 10.2 seconds

“160 | 38305 = 38.3 seconds

12678 = 12.7 seconds

| 320 | 57603 = 57.6 seconds

18346 = 18.3 seconds

Table 50. Time results for Number of Matches

No. of Matches | Time (sec) over 1000smalldocs - | Time (sec) over 10largedocs
5 “Low | 23423 = 23.4 seconds 8002 = 8 seconds
High | 25107 = 25.1 seconds 8593 = 8.6 seconds

Table 51. Time Results for Levels of Subordinate Fact Extractors

‘No. subordinate | Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
0 (original) | 24485 = 24.4 seconds 8697 = 8.7 seconds
‘ 1] 25526 =25.5 seconds 8072 = 8.1 seconds
2| 27449 = 27.4 seconds 8062 = 8.1 seconds
- 3.{ 28200 = 28.2 seconds 8111 = 8.1 seconds

DSTO-TN-0566

28

Table 52. Time results for a Fact Extractor with a co-reference rule

Time (ms) over 1000 small documents

Time (ms) over 10 large documents

34780 = 34.8 seconds

17475 = 17.5 seconds

A.4.2 Different Output Types

Table 53. Number of Create Rules output to XML

No. of rules | Time (ms) over 1000smalldocs Time (ms) over 10largedocs
1| 24485 =24.4 seconds 8697 = 8.7 seconds
80 | 31315 = 31.3 seconds 10154 = 10.2 seconds
160 | 38305 = 38.3 seconds 12678 = 12.7 seconds
320 | 57603 = 57.6 seconds 18346 = 18.3 seconds

Table 54. Number of Matches output to XML

No. of Matches

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

Low

23423 = 23.4 seconds

8002 = 8 seconds

High

25107 = 25.1 seconds

8593 = 8.6 seconds

Table 55. Levels of Subordinate Fact Extractors output to XML

No. subordinate

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

0 (original)

24485 =24 .4 seconds

8697 = 8.7 seconds

1 | 25526 = 25.5 seconds

8072 = 8.1 seconds

2| 27449 = 27.4 seconds

8062 = 8.1 seconds

3 | 28200 = 28.2 seconds

8111 = 8.1 seconds

Table 56. Number of Create Rules output to CSV

No. of rules | Time (ms) over 1000smalldocs Time (ms) over 10largedocs
1| 28271 =28.3 seconds 8482 = 8.5 seconds
80 | 30304 = 30.3 seconds 10555 = 10.5 seconds
160 | 43072 = 43.1 seconds 13029 = 13 seconds
. 320 | 56421 = 56.4 seconds 19158 = 19.2 seconds

Table 57. Number of Matches output to CSV

No. of matches

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

Low

16083 = 16.1 seconds

4296 = 4.3 seconds

High

19468 = 19.5 seconds

5368 = 5.4 seconds

Table 58. Subordinate Fact Extractors output to CSV

DSTO-TN-0566

No. subordinate

Time (ms) over 1000smalldocs

‘Time (ms) over 10largedocs '~

0 (original) | 28271 = 28.3 seconds 8482 = 8.5 seconds
1] 26539 = 26.5 seconds 8833 = 8.8 seconds

2] 27189 = 27.2 seconds 8953 = 9 seconds
3125267 =25.3 seconds 8432 = 8.4 seconds

Table 59. Number of Create Rules output to Database

No. of rules - | Time (ms) over 1000smalldocs Time (ms) over 10largedocs
; © 011 23714 = 23.7 seconds 8402 = 8.4 seconds
. 80| 35371 = 35.4 seconds 12358 = 12.4 seconds
. 160 | 45746 = 45.7 seconds 15322 = 15.3 seconds
2320 | 66185 = 66.2 seconds 21601 = 21.6 seconds

Table 60. Number of Matches output to Database

No. of matches

Time (ms) over 1000smalldocs

- | Time (ms) over10largedocs :

~Low

24806 = 24.8 seconds

8372 = 8.4 seconds

: High

72664 = 72.7 seconds

29682 = 29.7 seconds

Table 61. Subordinate Fact Extractors output to Database

No. subordinate | Time (ms) over 1000smalldocs | Time (ms) over 10largedocs . -
0 (original) | 23714 = 23.7 seconds 8402 = 8.4 seconds
126308 = 26.3 seconds 8142 = 8.1 seconds
2| 27190 = 27.2 seconds 8121 = 8.1 seconds
"3 28010 = 28 seconds 8182 = 8.2 seconds
A.4.3 List Fact Extractors

Table 62. 320 Rules

- FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs -
..~ List 1 19.3 4.8
1Rule | 74.4 25.6
320 Rules | 72.3 21.1

Table 63. 160 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
‘ List | 17.2 4.6
1Rule | 44.3 14.6
160 Rules | 32.9 9.4

DSTO-TN-0566

30

Table 64. 80 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
List | 15.5 4.4
1 Rule | 28 9.2
80 Rules | 22.3 6.2

Table 65. 40 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
List | 15.1 45
1 Rule | 20.9 6.5
40 Rules | 19.4 5.4

Table 66. 20 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
List | 14.7 4.6
1 Rule | 17.5 5.4
20 Rules | 15.6 49

Table 67. 10 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
List | 14.5 4.6
1 Rule | 15.2 4.8
10 Rules | 14.0 45

Table 68. 5 Rules

FX Format Time (sec) over 1000smalldocs | Time (sec) over 10largedocs
List | 13.9 44
1Rule | 14.1 4.5
5 Rules | 13.6 4.4

A.4.3 Different Input Types

Table 69. Time Results for Number of Create Rules with Text Input

No. of rules

Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

1 | 24485 = 24.4 seconds

8697 = 8.7 seconds

80 | 31315 = 31.3 seconds

10154 = 10.2 seconds

160

38305 = 38.3 seconds

12678 = 12.7 seconds

320

57603 = 57.6 seconds

18346 = 18.3 seconds

DSTO-TN-0566

Table 70. Time results for Number of Matches with Text Input

No. of Matches | Time (sec) over 1000smalldocs

Time (sec) over 10largedocs

Low | 23423 = 23.4 seconds

8002 = 8 seconds

8593 = 8.6 seconds

High | 25107 = 25.1 seconds

Table 71. Time Results for Subordinate Fact Extractors with Text Input

No. subordinate

“Time (sec) over 1000smalldocs

| Time (sec) over 10largedocs

0 (original) | 24485 = 24.4 seconds 8697 = 8.7 seconds
- o017 25526 = 25.5 seconds 8072 = 8.1 seconds
Tlen20) 27449 = 27.4 seconds 8062 = 8.1 seconds
©737) 28200 = 28.2 seconds 8111 = 8.1 seconds

Table 72. Time results for a Fact Extractor with a co-reference rule with Text Input

" Time (ms) over 1000 small documents

" Time (ms) over 10 large documents .

34780 = 34.8 seconds

17475 = 17.5 seconds

Table 73. Time Results for Number of Create Rules with HTML Input

No. of rules . | Time (ms) over 1000smalldocs

Time (ms) over 10largedocs

1| 30594 = 30.6 seconds

28351 = 28.4 seconds

80 | 36873 = 36.9 seconds

29813 =29.8 seconds

160} 42501 = 42.5 seconds

32016 = 32 seconds

320 | 56992 = 57 seconds

37243 = 37.2 seconds

Table 74. Time results for Number of Matches with HTML Input

No. of Matches Time (sec) over 1000smalldocs.

Time (sec) over 10largedocs

Low | 29663 = 29.7 seconds

26519 = 26.5 seconds

ngh 29993 = 30 seconds

28350 = 28.4 seconds

Table 75. Time Results for Subordinate Fact Extractors with HTML Input

| No. subordinate

Time (sec) over 1000smalldocs

' Time (sec) over 10largedocs

0 (original) | 30594 = 30.6 seconds 28351 = 28.4 seconds
11 31846 = 31.8 seconds 26548 = 26.5 seconds
"2 | 33148 = 33.1 seconds 25570 = 27.6 seconds

3

33138 = 33.1 seconds

27790 = 27.8 seconds

DSTO-TN-0566

Table 76. Time results for a Fact Extractor with 320 diseases in one OR statement with HTML
Input

Time (ms) over 1000 small documents Time (ms) over 10 large documents
68899 = 68.9 seconds 49802 = 49.8 seconds

Table 77. Time results for a Fact Extractor with a co-reference rule with HTML Input

Time (ms) over 1000 small documents Time (ms) over 10 large documents
33018 = 33 seconds 35871 = 35.9 seconds

32

DSTO-TN-0566

DISTRIBUTION LIST

Performance Analysis and Optimisation of the Fact Extractor System

Shona Heath
(DSTO-TN-0566)
Number of Copies
AUSTRALIA
DEFENCE ORGANISATION
Task sponsor:
DGICSO, Defence Intelligence Organisation Doc Data Sheet
DINTCAP, Defence Intelligence Organisation 1
ADIIE, Defence Intelligence Organisation 1
S&T Program
Chief Defence Scientist)
FAS Science Policy) 1 shared copy
AS Science Corporate Management)
Director General Science Policy Development)
Counsellor, Defence Science, London Doc Data Sheet
Counsellor, Defence Science, Washington Doc Data Sheet
Scientific Adviser to MRDC, Thailand Doc Data Sheet
Scientific Adviser Joint 1
Navy Scientific Adviser Doc Data Sheet .
Scientific Adviser - Army Doc Data Sheet
Air Force Scientific Adviser Doc Data Sheet
Scientific Adviser to the DMO Mé&A Doc Data Sheet
Scientific Adviser to the DMO ELL Doc Data Sheet
Information Sciences Laboratory
Chief Command & Control Division Doc Data Sheet
Research Leader Command & Intelligence
Environments Branch 1
Research Leader Military Information Enterprise Branch 1
Research Leader Theatre Command Analysis Branch 1
Head Intelligence Analysis 1
Head Distributed Enterprises Doc Data Sheet
Head Systems Simulation and Assessment 1
Head Theatre Operations Analysis Doc Data Sheet
Head Information Exploitation Doc Data Sheet
Head Human Systems Integration Doc Data Sheet

33

DSTO-TN-0566

34

Head C2 Australian Theatre Doc Data Sheet
Head HQ Systems Experimentation Doc Data Sheet
Head Information Systems Doc Data Sheet
S. Heath, C2D (Author) 1
Publications and Publicity Officer, C2D/EOC2D 1 shared copy
J. Das, C2D 1
G. Chase, C2D 1
Dr. C. Rainsford, C2D 1
Dr. T. Pattison, C2D 1
Brendan Dennis, C2D 1
DSTO Library and Archives
Library Edinburgh 2
Australian Archives 1
Capability Systems Staff
Director General Maritime Development Doc Data Sheet
Director General Information Capability Development Doc Data Sheet
Office of the Chief Information Officer
Deputy CIO Doc Data Sheet
Director General Information Policy and Plans Doc Data Sheet
AS Information Strategies and Futures Doc Data Sheet
AS Information Architecture and Management Doc Data Sheet
Director General Australian Defence Simulation Office Doc Data Sheet
Strategy Group
Director General Military Strategy Doc Data Sheet
Director General Preparedness Doc Data Sheet
Navy
Director General Navy Capability, Performance and Plans,
Navy Headquarters Doc Data Sheet
Director General Navy Strategic Policy and Futures,
Navy Headquarters Doc Data Sheet
Air Force
SO (Science) - Headquarters Air Combat Group,
RAAF Base, Williamtown NSW 2314 Doc Data Sht & Exec Summ

Army
ABCA National Standardisation Officer, Land Warfare
Development Sector, Puckapunyal
SO (Science), Deployable Joint Force
Headquarters (DJFHQ) (L), Enoggera QLD
SO (Science) - Land Headquarters (LHQ),
Victoria Barracks NSW

e-mailed Doc Data Sheet

Doc Data Sheet

Doc Data Sht & Exec Summ

Intelligence Program

COMD ASTJIC, Australian Theatre Joint
Intelligence Centre

PDJISS, Joint Intelligence Support System

PBD, Defence Signals Directorate

PBK, Defence Signals Directorate

J2 HQAST

Mr Jeff Robertson, Defence Intelligence Organisation

SQNLDR Pete Wooding, Capability Systems

DGSTA Defence Intelligence Organisation

Manager, Information Centre, Defence Intelligence
Organisation

Assistant Secretary Corporate, Defence Imagery and
Geospatial Organisation

Defence Materiel Organisation
Head Aerospace Systems Division
Chief Joint Logistics Command
Head Materiel Finance

Defence Libraries
Library Manager, DLS-Canberra
Library Manager, DLS-Sydney West

OTHER ORGANISATIONS
National Library of Australia
NASA (Canberra)

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Serials Section (M list), Deakin University Library,
Geelong, VIC (Research and Technical Reports only)
Hargrave Library, Monash University
Librarian, Flinders University

DSTO-TN-0566

Doc Data Sheet
Doc Data Sheet
1
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
Doc Data Sheet
1

1 (PDF version)
Doc Data Sheet
Doc Data Sheet

Doc Data Sheet
Doc Data Sheet

Doc Data Sheet
Doc Data Sheet

1
1

1
Doc Data Sheet
1

35

DSTO-TN-0566

OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES
US Defense Technical Information Center
UK Defence Research Information Centre
Canada Defence Scientific Information Service
NZ Defence Information Centre

ABSTRACTING AND INFORMATION ORGANISATIONS
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US

Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

Spare

Total number of copies:

36

= NN

e e e

43

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
Performance Analysis and Optimisation of the Fact Extractor CLASSIFICATION)
System
Document (8)]
Title L)
Abstract)
4. AUTHOR(S) 5. CORPORATE AUTHOR
Shona Heath Information Sciences Laboratory
PO Box 1500
Edinburgh South Australia 5111 Australia
6a. DSTO NUMBER 6b. AR NUMBER 6¢. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TN-0566 AR-013-124 Technical Note June 2004
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES
E9505/28/40 INT 02/290 DGICSO, DIO 40 4
DINTCAP, DIO
ADIIE, DIO
13. URL on the World Wide Web 14. RELEASE AUTHORITY
http:/ /www.dsto.defence.gov.au/corporate/reports/ DSTO-TN-0566.pdf Chief, Command and Control Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes

18. DEFTEST DESCRIPTORS

Text retrieval
Text processing (computer science)
Performance evaluation

19. ABSTRACT

DSTO has developed an in-house application called the Fact Extractor System for performing Information
Extraction. This system can be used to extract interesting information from text documents. It is a component-
based system providing a suite of tools to do this task. The system has a number of deployment tools,
including one called FormFiller. FormFiller is an application that enables a user to process a set of documents,
one at a time interactively or in an automated batch mode, with one or more Fact Extractors and save results to
an output file under user control. This report describes performance testing and optimisation of the FormFiller
application and Fact Extractors.

Page classification: UNCLASSIFIED

